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A mathematical model describing the dynamics of impact of a spherical particle on a solid surface is 

proposed and investigated. In closing the model, use is made of the experimental mean statistical values of 

the coefficients of restitution of the components of the velocity vector of the center of mass of the particle 

normal and tangential to the surface. The model permits a physically correct description of particle rotation 

upon impact and determination of its angular rotational velocity. 

When a gas suspension flows past bodies or obstacles, solid impurity particles recoil, as a rule, from the 

surface, thus making the flow picture of the impurity phase more complicated. In this case, in order to describe 

adequately the dynamics of particles in the disturbed region, it is necessary to determine correctly their 

parameters immediately after impact on a surface. Since real particles often possess an irregular shape, the 

parameters of their recoil have a random nature and may be evaluated only in some mean statistical sense, 

which is especially emphasized in [1-3].  Even if a particle is not destroyed upon impact and surface erosion 

is insignif icant ,  the par t ic le-surface interact ion is a very complicated process that  depends on the 

physicomechanical properties of their materials, the temperatures, the particle size, the magnitude and 

orientation of its velocity vector before impact, and so on [4 ]. The most reliable results on determination of the 

particle parameters at the moment of recoil are obtained experimentally and pertain to the coefficients of 

restitution of the components an and ar of the velocity vector of the center of mass of a mean statistical particle 

normal and tangential to the surface [1-3 ]. 

In collision theory discussed in theoretical mechanics (see, e.g., [5 ]), the interaction of a particle with a 

surface is considered as instantaneous, point contact and shear forces are postulated to be absent. This results in 

the fact that the tangential velocity of the center of mass of the particle does not change upon impact, i.e., there 

the equality ar = 1 is fulfilled. The change in the normal component of the velocity of the center of mass of the 

particle upon impact is calculated in the classical theory based on the Newton hypothesis that the coefficient of 

restitution normal component of the velocity of the point of contact of a particle with a surface e is a physical 

constant for given materials of the particle and the surface and is independent of the impact velocity, the angle of 

incidence, and the particle size. For a spherical particle, the equality an = e is fulfilled. Although the assumption 

a~ = 1 and an = const (___ 1) sharply contradicts experimental data [1-3 ], precisely these equalities are used to 

calculate the recoil of spherical particles from a surface in the overwhelming majority of works devoted to modeling 

flows in the two-phase aerodynamics problems [6-9 ]. Apparently, this is associated with the absence of a more 
rigorous reliable theory of collision. 

In [10 ], the experimental coefficients an and ar obtained in [1 ] are used to determine the velocity vector 
of particles immediately after impact. However, the authors of [10 ] do not take into consideration the fact that the 

action of tangential momentum on a particle upon impact leads not only to a decrease in the tangential velocity 
component of the particle but also to its rotation. As a result, recoiling particles are treated in [10 ] as nonrotating 
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and, consequently, the Magnus force is not considered. At the same time, tentative calculations for rotating 

particles* show that the Magnus force may change the picture of an impurity flow substantially. 

The angular velocity of particle rotation just after impact may be determined correctly from the equations 

of change in momentum and angular momentum if the coefficient of restitution of the tangential component of the 

velocity vector not of the center of mass of the particle but of the point of contact of it with the surface is known 

[11 ]. However, it is rather difficult to determine experimentally the above coefficients for the point of contact. 

Application of a similar approach to the calculation of the angular velocity of a particle, proceeding from known 

experimental a~ values for its center of mass, yields a physically incorrect result: a particle may be overrotated 

immediately after impact. Let us write the equations for the change in the component of momentum and angular 

momentum tangential to a surface during impact time of an initially nonrotating spherical particle: 

rnu l ( a ~ -  1) = - F ~ ,  J 0 ) 2 = - F ~ r .  

From these equations with account for the relation for the moment of inertia of a particle J -- 2mr2 /5  we find 

5 u 1 
~ r (aT-  1). 

Expressing the velocity of the point of contact of a particle just after impact Uc2 -- u2 + 0)2 r in terms of known 

quantities, we arrive at 

7(5) 
Uc2 = ~ u 1 a~ - 7 " 

Hence it is seen that at a~ < 5 / 7  the quantity Uc2 becomes negative, i.e., the velocity vector of the point of contact 

of a particle relative to the surface at the moment of its recoil is directed opposite to the velocity vector of the center 

of mass, which contradicts physical concepts. Since experimental a~ values for isometric particles in wide ranges of 

impact conditions may be substantially less than 5/7 [1-3 ], the above model of 092 calculations is obviously 

inapplicable under these conditions. 

Thus, currently neither an adequate deductive theory of impact of a disperse particle on a surface nor a 

satisfactory approximate model based on reliable experimental data is available. 

In the present work a semiempirical model of impact interaction of an impurity particle with a solid surface 

in a flow is proposed and examined. The model is based on the laws of mechanics, some realistic physical 

assumptions, and experimental data on the coefficients of restitution of the components of the velocity vector of the 

center of mass of the particle. This model allows determination of the velocity of particle rotation at the moment 
of its recoil from the surface without leading to the paradox described above. 

We now consider the recoil of some mean-statistical disperse impurity particle from the surface of a solid 

or obstacle. We assume that its shape is close to spherical, and from the viewpoint of the dynamic and geometric 

characteristics used below, it may be treated approximately as a sphere. This assumption is obviously valid for 

powder materials subjected to special technological spheroidization. It is also acceptable for isometric particles of 

irregular shape [12 ]. But this assumption is not fulfilled for particles in the form of platelets or fibers and therefore 

we do not investigate such particles in the present work. The impact of a spherical particle on a surface is considered 

to be two-dimensional (the velocity vectors of the center of mass of the particle before and after impact lie in a 

single plane with the vector of the normal to the surface at the point of contact at the moment of impact). In this 

case, the velocity vector of the center of mass of the particle may be described completely by just two components 
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Fig. 1. Schematic of the impact of a particle on an obstacle and notation. 

lying in the collision plane, and the angular velocity vector by just the component perpendicular to the collision 

plane, which simplifies the problem substantially. We also assume that the particle is not deformed during impact 

but the surface of the solid or the obstacle may be deformed. Such an assumption is valid when the hardness of 

the particle material substantially exceeds that of the obstacle material (for instance, in impact of electrocorundum 

particles on an unhardened steel or copper plate). Thus, we deal with the impact interaction of an underformable 

spherical particle with an elastoplastic obstacle (see Fig. 1). 

Unlike the classical theory, we assume that the spot of contact between a particle and an obstacle during 

impact has finite dimensions. If the velocity vector of an incident particle is at an acute angle to the surface 

(/5 < Jr/2), it should be expected that the profile of stresses developing in the obstacle at the particle-obstacle 

interface and applied to the particle is asymmetric. Then the vector of the resultant of these stresses f is at some 

nonzero angle to the normal vector n, and the point of application of f is displaced from the center of the contact 

spot in the direction of Ul. This displacement may be specified uniquely by the angle a (Fig. 1). As is seen, the 

normal component fn creates an angular momentum relatively to the particle's center, which must be taken into 

account, along with the moment of the force fr, in the equation of change in the angular momentum of the particle 

upon impact. (In the classical theory the angular momentum due to the force fn for a spherical particle is equal to 

zero.) 

The equations of change in the tangential and normal momenta of the particle in the collision plane and 

the equation of change in the angular momentum of the particle for the adopted scheme of its force interaction with 

the obstacle are as follows: 

du .fz dv fn dto r 
d t -  m '  d t -  m '  d - - ' 7 = 7 ( f n s i n a + L c ~  (1) 

We assume that during impact the force of resistance to particle motion in the tangential direction is 

proportional to the normal response and the characteristic slip of the particle relative to the obstacle at the contact 

spot : 

= - ( u  + , o r ) .  (2) 

Here x (> O) means a resistance coefficient that takes into account both the slip fraction and the resistance of the 

obstacle to deformation of it by a particle in the tangential direction which should be accounted for in the case of 

surface erosion. The introduced phenomenological dependence (2) is a generalized law of dry friction. 

The second equation in (1) may be integrated independently of the others. As a result, we obtain 

T 
(V 2 -  Vl ) = f f n d t  =_ Fn  " (3) 

0 
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We now introduce the mean normal force over the impact time using the relation fn - F n / T  and express v2 in terms 

of Vl and the coefficient of restitution an: v 2 = - a n v  1. Then equality (3) is transformed to the form 

A 

fnT = - mv 1 (a n + 1).  (4) 

/ x  

In the two remaining equations of system (1) we substitute fn for fn. Moreover, we assume that a and x 

are constant during impact and are independent of the angular velocity ~1 of the incident particle. Although these 

assumptions are not rigorous, they are, in our opinion, quite acceptable since the aim of modeling the impact 

dynamics is determination of particle parameters at the moment of recoil from a surface. With account for relation 

(2) and the assumptions made, the first and third equations of (1) may be written in the form 

A A 

du f ,  Yn - x (u + ~or) - -  - r [sin a - x (u + a~r) cos a ] (5) 
dt  m ' clt J 

These  two equations form a closed linear system in which fn is prescribed by relation (4) and x and a are 

parameters. 

The initial conditions for system (5) are as follows: 

t ---- 0 :  U = U 1 , 09 = O) 1 . (6) 

yields 

Cauchy problem (5), (6) has an exact analytical solution that at t = T (at the moment of particle recoil) 

1 E u 2 -  2 + A  u I ( 2 E + A ) + 2 w l r ( E -  1) + 2 A t a n a  ( I _ E + B ) ]  
(2 + A) tr _] 

092-  2 + A  A ( E -  1 ) + w  I ( A E + 2 ) +  ( 2 + A )  rtc 

2 + A  
A = 5 cos a ,  B = xv 1 (a n + 1) 2 , E = exp B .  

(7) 

In deriving equalities (7) it has been taken into account that the moment of inertia of a spherical particle relative 

to its center of mass is J = 2mr2/5 .  Further analysis of solution (7) is concerned with choosing the values of the 

as yet undetermined parameters tc and a. 

All known experimental  data on the coefficients c~ and an were obtained for particles that do not rotate 

before impact, and therefore it is natural to require that u2 from (7) be equal at ~Ol --- 0 to the experimental value 

o f  a r U l :  

1 [ 2 A t a n a  ( I _ E + B ) ]  = a z u l .  (8) 
2 + A  Ul (2E + A) + (2 + A ) x  

Relation (8) contains, along with a and x, the quantities Ul, vl (entering B), at, and an. The  components 

Ul and Vl are expressed in terms of the magnitude of the velocity vector of the incident particle 111 and the angle 

fl in the following way (see Fig. 1): Ul = V1 cos fl, Vl -- -V1 sin ft. In an experiment,  for prescribed particles and 

material of the obstacle the dependences ar(fl) and an(fl) [1, 2 ] or ar(fi) and an(V1, fl) [3 ] are usually determined. 

In both cases relation (8) gives the functional dependence a = a(x, V1, fl), which for fixed V1 and fl obviously turns 

into a(x ) .  

In the present  work, in all numerical calculations we have used experimental data on the coefficients of 

restitution a~ and an from [3 ], in which the interaction of electrocorundum particles with obstacles made of different 

materials was investigated. Here the dependence an(V I, fl),  approximating experimental  points for different 

obstacles, is taken in the same form as in [3]: a n = 1 - [1 - exp(-0.1V~l61)] sin ft. The  dependences ar(fl) for 

different materials of the obstacle are determined, unlike [3 ], with account for the additional condition 
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TABLE 1. Coefficient Values in the Approximate Dependence a~(fl) for Different Materials of the Obstacle 

Coefficient in formula (9) 
Obstacle material 

Co CI C2 C 3 

Steel 

Copper 

Lead 

0.690 

0.588 

0.430 

-0.288 

-0.354 

-0.239 

0.114 

0.0762 

-0.0759 

0.0219 

0.0547 

0.108 

/I.Z 

/ 7  I I i ! ! 

-2 0 2 q- 6 Zog 
Fig. 2. Angle a (rad) versus coefficient x (sec/m) for different materials of 

the obstacle (V1 = 200 m/sec, fl -- 25~ 1) steel; 2) copper; 3) lead. 

d~av 
/ 6 = - :  k - 0 ,  k =  1, 3 . . . . .  

2 dp 

which is the symmetry condition for the function ar (fl) concerning strictly normal impact of a particle on a surface. 

The experimental points for ar from [3 ] are approximated by the following polynomials: 

a =C0+CI  _fl + C  2 _~_f l  + C  3 ~ _ / ~  (9) 

by the least-squares method* (the point for a copper obstacle at fl = 750 disagrees sharply with the general picture 
[3 ] and therefore it has not been taken into account in the calculations). The coefficients of (9) for various materials 

of the obstacle are presented in Table 1. 
For the aforementiomed an(V1, r) and a~(fl) we investigated a(x) for different 1/1, r ,  and materials of the 

obstacle using equality (8). A typical form of these dependences is shown in Fig. 2. The function a(x) decreases 
with increase in x and its graph tends rapidly to a horizontal asymptote, virtually attaining it at x - 1. As calculation 

results show, a changes rather weakly (by 15 -20%)  in a wide range of the coefficient x (for 0.01 sec/m 
< x < oo). Here w2 obtained by (7) also changes insignificantly. As is seen in the figure, with an increase in the 

plasticity of the obstacle material, the angle a increases. This may be interpreted as a result of deeper penetration 
of a particle into a more plastic material (for fixed 111 and fl), which corresponds fully to physical concepts. 

The experimentally determined numerical values of the coefficient ar for different materials of the obstacle and 

angles r ,  represented by points on the curves in [3 ], have been kindly provided by V. A. Lashkov. 
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Fig. 3. Limiting angle al (rad) versus the angle of incidence t3 (deg) of the 

particle for different materials of the obstacle (V1 = 200 m/sec):  1) steel; 2) 

copper; 3) lead. 

If we assume that the actual value of x in phenomenological law (2) lies in the aforementioned range, then 

the angle a may be assumed, with sufficiently high accuracy, equal to the limiting value a l =xlim a(x) .  To determine 

al, we pass in (8) to the limit as x --, ~.  After simple transformations we arrive at the equation 

A l - A / t a n a l t a n  f l ( a  n +  1) = ( 2 + A ~ a r ,  A l = S c o s a  l ,  

which reduces to a quadratic one relative to z = t an (a l / 2 ) :  

( 5 - 3 a r )  z 2 +  1 0 t a n / 3 ( a  n +  1) z + 7 a  r - 5 = O .  (lO) 

From physical reasoning, of the two roots Zl, 2 we must take Zl, which gives a smaller a l in absolute magnitude, 

which corresponds to a lesser penetration of the particle into the obstacle. For a fixed value of V1 the solution of 

Eq. (10) and subsequent transition to al  give at(r )  (see Fig. 3). It is pertinent to note that with decreasing fl after 

passage through r .  Eq. (10) no longer has real roots. 

The r .  values in Fig. 3 are obtained at ar = 5 /7 .  If ar < 5 / 7 ,  then al > 0; if ar >. 5 /7 ,  then al < 0. This 

result, obtained at x -~  ~ ,  makes it possible to give a physical interpretation to the paradox discussed at the 

beginning of the paper. 

Indeed, if the incident particle does not rotate, the highest angular velocity at the moment of recoil from 

the surface is obtained for rigid (without slip) cohesion of the particle with the obstacle, i.e., at x --, ~.  In this case, 

accounting only for the tangential force fr in the equation of change in the angular momentum of the particle results, 

at ar < 5 /7 ,  in the fact that co 2 exceeds the maximum permissible value, i.e., the particle is overrotated. Introduction 

of a nonzero angle a into our considerations and, as a consequence, an unrotating moment at a > 0, arising from 

the normal response fn, changes radically the properties of the mathematical impact model and at ar < 5 / 7  allows 

the experimental data on ar to be satisfied under  conditions both of rigid cohesion of the particles with the obstacle 

and of slip at the contact spot. The  value a l gives the smallest shoulder r sin al of the force fn  (see Fig. 1), for 

which a particle is rotated most upon impact, and simultaneously u2 and v2 agree with experimental data. In the 

presence of slip the obtained angle a is larger than a I. 

We now pass to the case fl < ft., which corresponds to the inequality aT > 5 / 7 .  The assumption that upon 

impact the particle is in rigid cohesion with the obstacle (x --, oo) leads to the fact that either a l < 0 or with decrease 

in/3 real solutions for a l do not exist at all. The  latter means that at small/3 the above assumption is not fulfilled. 

If a l < 0 exists, then the normal force fn must rotate the particle additionally to the action of fz, which at small 

angles/3 does not seem realistic. Thus,  at t3 </3 .  it is necessary to take into consideration slip of the particle over 

the obstacle surface at the contact spot. 
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Fig. 4. Coefficient of restitution of the total kinetic energy and its components 

as a function of the angle of incidence 16 (deg) of the particle: 1) aet; 2) aer; 

3) ae. 111 = 200 m/sec,  091 = 0, r = 10 -4 m, the obstacle material is steel. 

Since the parameters x and a of the model are not known exactly, they may be prescribed, in accordance 

with the aforesaid, as follows. Starting from angles of incidence 16 _> ft., it is reasonable to adopt the hypothesis of 

rigid cohesion of a particle with the surface, i.e., to consider the limit x ~ 0% determine a l, and then calculate u2 

and 002 by formulas (7). At 16 < ft., it is expected that the particle may slip. In this case we may assume 61 = 0, 

find the corresponding value of x from Eq. (8), and calculate u2 and 09 2 by formulas (7). The hypothesis about the 

rigid cohesion of the particle with the obstacle, starting from some critical angle of incidence, agrees with [13, 14 ]. 

The assumptions formulated lead to the following relations for u2 and 002: 

u lO r + 0 0 1  r ( o  r -  1), f l < f l . ,  

u2 = 2 
Ulor 2 + 5 cos a t 091r' t6 >-- 16.' 

(11) 

5 U  5 

e~ = u 1 2 
- r or + 2 091, 

3<3.,  

fl ~ f l , .  

(12) 

Dependences (11) and (12) may be simplified substantially, thus avoiding calculation of the function 

al(V1, fl), if we assume approximately that cos al ~- 1. In this case the error in calculating the coefficient 2/(2 + 5 

cos al) is 3% at al = 0.3, 9% at al  = 0.5, and 16% at al -- 0.7 (the values of the angle are taken from Fig. 2). This 

error is obviously quite acceptable within the framework of the suggested model. 

For applications it is of interest to know what portion of the kinetic energy of an incident particle converts, 

upon impact, to kinetic energy of the recoiling particle and how the latter is distributed between translational and 

rotational motion of the particle. We introduce the coefficient of restitution of the kinetic energy a e of a particle as 

a e =  ae t+  aer, 

2 2 
m (u  2 + 1,~2) 

aet = 2 2 2 ' a e r  = 
rn (u 1 + Vl) + J091 m (u~ + v~)+ J0912" 
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Results of calculations of net, aer, and ae at vJ1 = 0 are shown in Fig. 4. 

In conclusion, it is worth noting that the suggested simple semiempirical model of impact of a particle on 

a surface permits calculation of uz and w 2 for both co 1 = 0 and col ~ 0, which is of importance for a correct description 

of gas suspension flows past bodies and obstacles upon repeated recoil of particles from a surface. 

The authors thank N. V. Tarasova for help in the work. 

N O T A T I O N  

r, m, J, radius, mass, and moment of inertia of a particle relative to its center; V, particle velocity; u, v, 

projections of the velocity vector of a particle onto the tangent and normal to the surface; co, angular velocity of 

particle rotation; t3, angle of incidence; f ,  f~, fn, vector of the resultant force from the obstacle on a particle upon 

impact and its projections onto the tangent and normal to the surface; a, angle determining the point of application 

of the force f; ~c, resistance coefficient; T, impact time; an = I v21/I Vl I, ar = l u2 l / i u l  I, coefficients of restitution 
of the normal and tangential velocities; a e, coefficient of restitution of the total kinetic energy. Subscripts: 1, 2, 

particle parameters before and after impact. 
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